Individual tree models growth and calculus modules

Individual tree models - state variables

× The most common principal variables

- Dominant height (stand level variable)
- Diameter at breast height
- Tree height may also be a principal variable

× Derived variables

- Tree: total height and height to the base of the crown, tree volume, tree biomass (total and per component)
- Stand: all variables except dominant height

Calculus of stand variables

× Example for stand volume

- Prediction of tree mortality and of diameter tree growth for each tree
- Prediction of tree height with a height-diameter curve (or, eventually prediction of height growth) for each tree
- Prediction of the volume for each tree with a volume equation
- Calculus of plot volume by summing up the volume of every tree in the plot
- Expansion to the ha, using the respective expansion factor (10000/plot area) - many models use 1 ha plots therefore this step is not needed

Modeling individual tree dbh growth

- × Several methods have been used to model tree dbh growth, which may be classified as:
 - Linear or nonlinear regression models using i_d or i_g as dependent variable
 - ✓ Difference equations (d_{t2} or g_{t2} as dependent variable)
 - Growth potential x modifier type models
 - Dependent variable is usualy i_d or i_g

Linear regression models - examples

Difference equations - examples

× Dbh growth model for dominant cork oak trees (without age explicit (200 is an asymptote)

Potential X modifier type models

× These models are based on the assumption that individual tree growth may be modeled as:

$i_d = i_d$ potential X modifier

- The *i_d* potential represents the growth of a tree of the same size that grows without limitations
- The modifier is a function that takes values between 0 and 1, defining growth restrictions (usually competition but other factors may also be taken into account)

Potential X modifier type models

- × There are different concepts of potential growth that have been used:
 - Maximum growth that a tree of the same species and size/age may attain under optimum conditions in terms of water and nutrients
 - Maximum observed growth for a tree of the same species and size
 - Maximum growth of the trees in the same plot (growth of the dominant trees)

Potential X modifier type models - example

× GLOB-tree model - potential growth

Potential X modifier type models - example

Height prediction - example

GLOB-tree model

× Young stands (t<4 years)

 $h = 1.30 + hdom \left(1 + \left(-0.43487 - 0.0108 \ t + 0.09772 \ hdom - 0.06021 \ dg \right) e^{-0.04864} \ hdom \right) \left(\begin{array}{c} -1.58926 \ \frac{d}{hdom} \end{array} \right)$

× Adult stands (t>4 years)

$$h = hdom \left(1 + \left(0.10694 + 0.02916 \frac{N}{1000} - 0.00176 d \max \right) e^{0.03540 hdom} \right) \left(1 - e^{-1.81117} \frac{d}{hdom} \right)$$

Crown variables - examples

× GLOB-tree model - crown ratio

Predicting tree mortality - examples

× GLOB-tree model

