Individual tree models growth and calculus modules

Individual tree models - state variables

\times The most common principal variables
\checkmark Dominant height (stand level variable)
\checkmark Diameter at breast height
\checkmark Tree height may also be a principal variable
\times Derived variables
\checkmark Tree: total height and height to the base of the crown, tree volume, tree biomass (total and per component)
\checkmark Stand: all variables except dominant height

Calculus of stand variables

\times Example for stand volume
\checkmark Prediction of tree mortality and of diameter tree growth for each tree
\checkmark Prediction of tree height with a height-diameter curve (or, eventually prediction of height growth) for each tree
\checkmark Prediction of the volume for each tree with a volume equation
${ }^{\vee}$ Calculus of plot volume by summing up the volume of every tree in the plot
\checkmark Expansion to the ha, using the respective expansion factor (10000/plot area) - many models use 1 ha plots therefore this step is not needed

Modeling individual tree dbh growth

\times Several methods have been used to model tree dbh growth, which may be classified as:
${ }{ }^{\text {Linear }}$ or nonlinear regression models using i_{d} or i_{g} as dependent variable
\checkmark Difference equations ($d_{t 2}$ or $g_{t 2}$ as dependent variable)
\checkmark Growth potential x modifier type models

- Dependent variable is usualy i_{d} or i_{g}

Linear regression models - examples

X Examples:

Site

information

$$
\begin{gathered}
\ln \left(\mathrm{i}_{\mathrm{g}, 10}\right)=\beta_{0}+\beta_{1} \ln (\mathrm{~d})+\beta_{2} \ln (\mathrm{CCF})+\beta_{3} \ln \left(\frac{\mathrm{~d}}{\mathrm{dg}}\right)+\beta_{4} \ln (\mathrm{~S})+\beta_{5} A L T \\
\ln \left(\mathrm{i}_{\mathrm{g}, 10}\right)=\beta_{0}+\beta_{1} \ln (d)+\beta_{2} \ln \left(\mathrm{C}(\mathrm{AF})+\beta_{3} \ln \left(\frac{\mathrm{~d}}{\mathrm{dg}}\right)+\beta_{4} \ln \left(\frac{1}{\mathrm{t}}\right)\right. \\
\begin{array}{c}
\text { Stand } \\
\text { density }
\end{array} \\
\text { Timeersion }
\end{gathered}
$$

Difference equations - examples

\times Dbh growth model for dominant cork oak trees (without age explicit (200 is an asymptote)

$$
\begin{gathered}
\left.d_{t+a}=200\left(1-e^{-(-0.00093+0.000275 \mathrm{~s})} \mathrm{a}\left(1-\left(\frac{d_{\mathrm{t}}}{200}\right)^{1.1207}\right)\right)\right)^{\frac{1}{1.1207}} \\
\text { Site index } \\
\text { Tree } \\
\text { dimension }
\end{gathered}
$$

Potential X modifier type models

\times These models are based on the assumption that individual tree growth may be modeled as:

$i_{d}=i_{d}$ potential X modifier

- The i_{d} potential represents the growth of a tree of the same size that grows without limitations
- The modifier is a function that takes values between 0 and 1, defining growth restrictions (usually competition but other factors may also be taken into account)

Potential X modifier type models

\times There are different concepts of potential growth that have been used:
\checkmark Maximum growth that a tree of the same species and size/age may attain under optimum conditions in terms of water and nutrients
\checkmark Maximum observed growth for a tree of the same species and size
\checkmark Maximum growth of the trees in the same plot (growth of the dominant trees)

Potential X modifier type models - example

\times GLOB-tree model - potential growth

Potential X modifier type models - example

X GLOB-tree model - modifier

Stand density

Height prediction - example

GLOB-tree model

X Young stands ($\mathrm{t}<4$ years)

$h=1.30+\operatorname{hdom}\left(1+(-0.43487-0.0108 \quad t+0.09772 \quad\right.$ hdom $-0.06021 d g) e^{-0.04864} \quad$ hdom $)\left(1-e^{-1.58926} \frac{d}{h d o m}\right)$

X Adult stands (t>4 years)

$$
h=h d o m\left(1+\left(0.10694+0.02916 \frac{N}{1000}-0.00176 d \max \right) e^{0.03540 \text { hdom }}\right)\left(1-e^{-1.81117} \frac{d}{h d o m}\right)
$$

Crown variables - examples

X GLOB-tree model - crown ratio

Predicting tree mortality - examples

X GLOB-tree model

